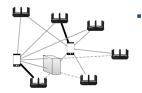
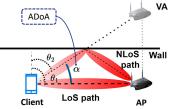


INDOOR MILLIMETER WAVE LOCALIZATION USING MULTIPLE SELF-SUPERVISED TINY NEURAL NETWORKS


Anish Shastri and Paolo Casari

Department of Information Engineering and Computer Science, University of Trento, Italy Email: anish.shastri@unitn.it

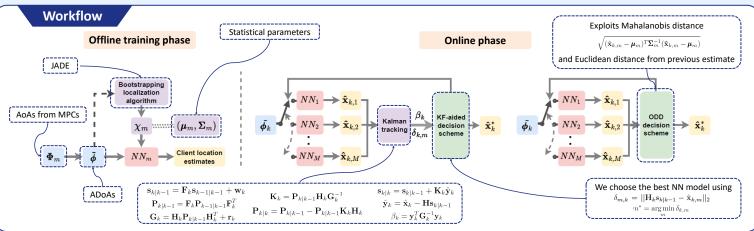
Why mmWaves for localization?

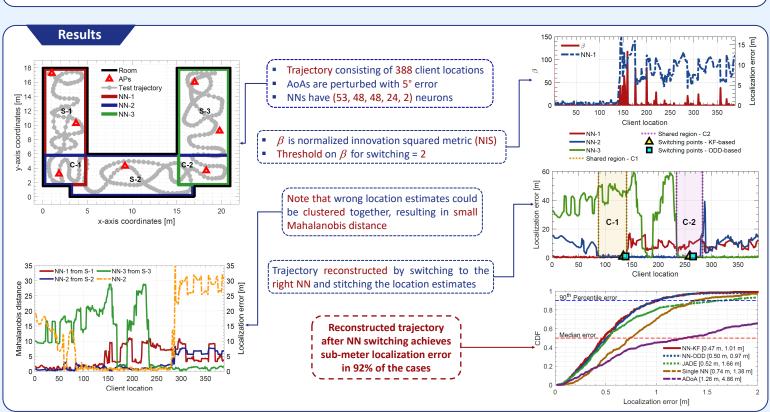

- Large available bandwidth
- Quasi-optical propagation results in dominant LoS and fewer NLoS paths
- But they are short-ranged, hence dense deployments are inevitable

- Location information can be useful for:
 - Predictive handovers to prevent blockage events
 - Assistance in beam training procedure

Self-supervised tiny neural networks

- 3 hidden layers in the NN model
- Input features: angle-difference of arrivals (ADoAs)
- Trained in self-supervised manner using training labels obtained from JADE algorithm
- Why JADE?




- Jointly estimates location of the clients and the APs
- Requires zero knowledge of the indoor environment

Challenge: A single NN learns feature mapping specific to the environment it is trained in, hence, it cannot generalize to generic and large environments

Problem statement

Use multiple self-supervised tiny neural networks for localization, but how to decide which one to switch to and when?

