

On CNF Conversion for Disjoint SAT Enumeration

Gabriele Masina Giuseppe Spallitta Roberto Sebastiani

SAT Enumeration

■ Task: Find all the assignments that satisfy a given Boolean formula φ

$\mathbf{E}\mathbf{x}$ ample

$$\varphi \stackrel{\text{\tiny def}}{=} A \vee (B \wedge C)$$

Set of total assignments:

Set of (disjoint) partial assignments:

$$\begin{split} \mathcal{TTA}(\varphi) &= \{ \ \{ \ A, \ B, \ C \}, \\ \{ \ A, \ B, \neg C \}, \\ \{ \ A, \neg B, \ C \}, \\ \{ \ A, \neg B, \neg C \}, \\ \{ \ A, \neg B, \ C \} \} \end{split}$$

$$\mathcal{TA}(\varphi) = \{ \{ A \}, \{ \neg A, B, C \} \}$$

- Goal: find a $\mathcal{TA}(\varphi)$ as compact as possible
 - \implies Why? Compact representation, faster enumeration
- Key problem: find short partial assignments

Motivation: SAT Enumeration for Probabilistic Inference

How do we count?

- Weighted Model Counting (Boolean) WMC(φ , $w \mid \mathbf{A}$) $\stackrel{\text{def}}{=} \sum_{\mu \in \mathcal{TTA}(\varphi)} w(\mu)$
- $\label{eq:weighted} \begin{array}{l} \blacksquare \text{ Weighted Model Integration } (\mathrm{SMT}(\mathcal{LRA})) \\ \mathsf{WMI}(\varphi, w | \mathbf{A}, \mathbf{x}) \stackrel{\text{def}}{=} \sum_{\mu^{\mathbf{A}} \cup \mu^{\mathcal{LRA}} \in \mathcal{TTA}(\varphi)} \int\limits_{\mu^{\mathcal{LRA}}} w(\mathbf{x} | \mathbf{A}) d\mathbf{x} \end{array}$

 $\Pr(\psi \mid \chi) = \frac{\mathsf{WM}*(\psi \land \chi)}{\mathsf{WM}*(\chi)}$

Current approach & Efficiency issues

SAT solvers work with formulas in Conjunctive Normal Form (CNF) $(l_{11} \lor l_{12} \lor ...) \land (l_{21} \lor l_{22} \lor ...) \land ...$

- \blacksquare Convert φ to CNF using the Tseitin CNF Encoding CNF_{Ts}
- Enumerate $\mathcal{TA}(\mathsf{CNF}_{\mathsf{Ts}}(\varphi))$ projected onto the original variables only

Example

In the example above:

- Label each sub-formula with a fresh variable $\mathsf{CNF}_\mathsf{Ts}(\varphi) = (A \vee S) \wedge \mathsf{CNF}(S \leftrightarrow B \wedge C)$
- Enumerate $\mathcal{TA}(\mathsf{CNF}_\mathsf{Ts}(\varphi))$ projected onto $\{A,B,C\}$

$$\mathcal{TA}(\varphi) = \{ \{ \neg S, A, \neg B \}, \{ \neg S, A, B, \neg C \}, \{ S, B, C \} \}$$

Notice: Two assignments instead of one!

What causes the issues?

- Definitions as $(S_i \leftrightarrow \varphi_i)$ force to assign a truth value also to (variables in) φ_i
- \blacksquare Partial assignments are unnecessarily-long and $\mathcal{TA}(\varphi)$ is big
- TLDR: Tseitin CNF is not suitable for enumeration since "↔" definitions do not allow finding short partial assignments

Our solution

- \blacksquare Convert the formula in $\bf Negation\ Normal\ Form\ (NNF)$
- Use the **Plaisted&Greenbaum CNF** \implies add definitions as $(S_i \rightarrow \varphi_i)$ if φ_i occurs only positively

Example

In the example above:

- φ is already in NNF, label each sub-formula using single implications $\mathsf{CNF}_{\mathsf{PG}}(\mathsf{NNF}(\varphi)) = (A \vee S) \wedge \mathsf{CNF}(S \to B \wedge C)$
- Enumerate $\mathcal{TA}(\mathsf{CNF}_{\mathsf{PG}}(\mathsf{NNF}(\varphi)))$ projected onto $\{A,B,C\}$

$$\mathcal{TA}(\varphi) = \{ \begin{bmatrix} \{\neg S, A \}, \\ S, \neg A, B, C \} \}$$
 Notice: Only one assignment!

Why CNF_{PG} ?

■ By assigning $\neg S_i$ the **definition** $(S_i \rightarrow \varphi_i)$ **can be "ignored"** \implies we are not forced to assign a truth value to (variables in) φ_i anymore

Why NNF?

- If φ_i occurs positively and negatively, CNF_{PG} adds $(S_i \leftrightarrow \varphi_i)$ anyway
- NNF splits φ_i into φ^+ and φ^- , each occurring only positively
- \blacksquare Then $\mathsf{CNF}_{\mathsf{PG}}$ labels them with $(S_i^{\scriptscriptstyle +} \to \varphi^{\scriptscriptstyle +})$ and $(S_i^{\scriptscriptstyle -} \to \varphi^{\scriptscriptstyle -})$
- The truth value of φ_i can be ignored by assigning $\neg S_i^+$ and $\neg S_i^-$

Experimental results

Setting:

- Convert each non-CNF formula to CNF using CNF_{Ts} , CNF_{PG} , or $NNF + CNF_{PG}$
- \blacksquare Enumerate the assignments projected on the original variables using Mathsat

Results & Conclusions

- \blacksquare $\mathsf{CNF}_{\mathsf{Ts}}$ is not good for enumeration
- CNF_{PG} solves its problems only in part
- NNF + CNF_{PG} is the best choice \implies drastically reduce size of $\mathcal{TA}(\dots)$ and enumeration time by several orders of magnitude

Notice the logarithmic scale of the axes!

Future work:

- Heuristics to better exploit the encoding
- Extend to non-disjoint SAT enumeration
- Extend to disjoint and non-disjoint SMT enumeration
- Apply it to WMI computation

Enumeration on combinatorial circuits. Timeouts (dashed lines): CNF_{Ts} 49/250, CNF_{PG} 44/250, NNF + CNF_{PG} 27/250