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Introduction and Background Intuition
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Overfitting node

                                             integrates the gradient along a path. Specifically, given                 a baseline 
input which represents a neutral input, the resulting explanation is computed as:

GNN and xAI

The fidelity sufficiency           is the difference in the predicted probability when computed on the graph G 
and on the explanation. Since the explanation is a soft mask, we fix a number of levels             and apply 
an incremental thresholding with            threshold levels  
Where we define               to be the hard mask explanation derived from        with threshold    
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In the initial stages of experiments with synthetic datasets, it became evident that an increase in 
validation loss leads to a decrease in sufficiency

Experimental evidence

Loss and sufficiency

METHODS

Compute the loss        and the sufficiency

Measure – Noise localization

xReg-Trend

Given a patient hyperparameter (P). The node      is overfitting 
if its loss is decreasing and its sufficiency is decreasing 

over P consecutive epochs
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PRELIMINARY RESULTS

Nb. nodes

Nb. edges

Cora

2708

5429

1433

Citeseer

3327

4732

3703Nb. features

Nb. classes 7 6

Dataset statistics
Model Cora Citeseer

Base 81.5 ±(0.3) 70.3 ±(0.9)

LP 70.4 ±(0.0) 50.4 ±(0.0)

MixHOP 81.9 ±(0.2) 71.4 ±(0.4)

GAUG 83.6 ±(0.5) 73.3 ±(1.1)

DropEdge 82.8 ±(0.9) 72.3 ±(1.3)

GraphMix 84.5 ±(0.6) 74.7 ±(0.6)

GRAND 84.3 ±(0.3) 74.2 ±(0.3)

NodeAug 85.1 ±(0.4) 74.9 ±(0.5)

Nasa 84.7 ±(0.3) 75.5 ±(0.4)

xReg-S 84.6 ±(0.4) 75.2 ±(0.4)

xReg-T 85.3 ±(0.5) 75.9 ±(0.4)
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