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GNN Limitations

Overfitting

Out-of-distribution generalization
Oversmoothing

Oversquashing

Noise propagation

Experimental evidence

In the initial stages of experiments with synthetic datasets, it became evident that an increase in
validation loss leads to a decrease in sufficiency

Loss and sufficiency
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GNN and xAI

INTEGRATEDGRADIENTS integrates the gradient along a path. Specifically, given 2/ € R% a baseline
input which represents a neutral input, the resulting explanation is computed as:
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Sufficiency

The fidelity sufficiency Fyy is the difference in the predicted probability when computed on the graph G
and on the explanation. Since the explanation is a soft mask, we fix a number of levels N; € Nand apply
an incremental thresholding with N, +1 threshold levels t,. = k/N;, k =0,..., N;

Where we define Gexp () to be the hard mask explanation derived from Gex, with threshold ¢
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METHO

Measure - Noise localization

Compute the loss L;, and the sufficiency Fiy f,,
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